R&D Plan – This Year

Refine Extrusion Module Conceptual Design Refine Electronics Conceptual Design

- Extrusion Mechanical Tests
- Extrusion Light Yield Tests
- Scintillator Mixing
- APD Electronics Testing & Design

Pre- prototypes

Pre-Prototypes - Extrusions

- 3 cell profiles (4 cm x 2.5 cm per cell), 12% TiO₂
 - 4 ft long for most tests
 - 48 ft long for "vertical slice"
 - 10 ft long for cosmic ray test?
- Hand crafted end seals and manifolds
- Looped fiber

Pre-Prototypes – APD Electronics

- "Off-the-shelf" Hamamatsu APDs (32 pixels)
- "Off-the-shelf" MASDA chip
- Hand crafted circuit board
- Hand crafted Peltier cooling

Current Scintillator R&D

Hardware

- Argonne stack assembly, beam trigger, cosmic ray tests
- Caltech accelerated lifetime, light yields
- Fermilab front end electronics, cosmic ray tests, detector structure
- Harvard front end electronics
- Indiana light yields, module assembly, scintillator handling
- Minnesota apds, front end electronics, module assembly, full length test
- Rutherford/Oxford daq interface to fee
- Texas A&M module assembly
- •Texas full length test
- William & Mary stack assembly, cosmic ray tests

Simulations & Cost

- •Fermilab
- •Minnesota

Optimize cell size, absorber thickness

Stanford

R&D Plan – Next Step (2 year plan)

Conceptual Engineering for Refined Design & Costing

- Bare APDs (Hamamatsu)
- Matched Electronics (ASIC)
- Integrated Electronics Design
- Integrated Scintillator Module Design
- Factory Machine Design
- Scintillator Handling System

Prototypes

- Bare APDs and Front End Electronics in Box (\$400K)
- Injection Molded Manifolds, Seals, Connectors (\$100K)
- 30 cell PVC extrusion (\$250K)
- Factory Machines (\$200K ??)
- Scintillator Mixing System (\$100K)

Construct 1 Plane Prototype at Fermilab

Construct Surface Detector at Soudan?